A Model Integrated Framework for Designing Self-managing Computing Systems

Jia Bai
Institute for Software Integrated Systems
Vanderbilt University
Nashville, Tennessee 37235
jia.bai@vanderbilt.edu

Sherif Abdelwahed
Department of ECE
Mississippi State University
Mississippi State, Mississippi 39762
sherif@ece.msstate.edu

ABSTRACT
This paper presents a model integrated framework, referred to as the Automatic Control Modeling Environment (ACME), to facilitate the use of control-based technology for self-management in computation systems. ACME is a domain-specific graphical modeling environment with automated synthesis tools. The framework allows domain engineers to develop models for general computation systems and to capture their performance requirements and operational constraints. The framework can automatically generates executable codes for the controllers based on the given system model and specifications. A case study of an online power management is used to demonstrate the application of ACME.

Keywords
self management, predictive control, model-integrated computing

1. INTRODUCTION
Control-theoretic strategies have been recently applied successfully for the design and verification of various adaptive resource management schemes in computation systems. If system dynamics is precisely modeled and changing environmental parameters are accurately estimated, appropriate run-time control algorithms can be effectively developed to realize system self-regulation and achieve desired Quality of Service (QoS) objectives. Examples of control-based resource management strategies include task scheduling [11, 14], QoS guarantees in web servers [10], resource allocation control [5, 13], network flow control [8], and power management [9].

Domain engineers and developers of computing systems, however, may not have the background to apply and implement control-based methods. To facilitate the use of control-based techniques, a middleware QoS-control architecture is proposed in [15] to provide software performance assurances based on linear feedback control theory. Also in [12], a model-based design framework, referred to as the Dynamic QoS Modeling Environment (DQME), is developed to achieve end-to-end QoS management in computing systems using model-based predictive control strategies.

In this paper, we present a model-based design framework that facilitates the design of general control-based adaptation components for a general class of computational systems. The framework includes a generic control library from which a controller can be selected and parameterized for a given system and operation settings. The framework allows the user to develop formal models capturing relevant aspects of the system behavior as well as its performance specification. The models are then used by an interpreter to automatically generate executable codes for an appropriate control module. This framework is referred to as the Automatic Control Modeling Environment (ACME). The framework is based on the Generic Modeling Environment (GME) [9], a meta-programmable toolkit, which allows for easy creation of domain specific modeling languages and environments.

The ACME framework allows the design and specification of general control-based QoS adaptation policies. As a specific implementation case study, we consider the limited look-ahead control (LLC) approach proposed in [2, 6, 7] for resource management of distributed system applications. In this approach, control actions are computed to optimize system behavior for pre-specified QoS criteria over a limited look-ahead prediction horizon. Control objectives are represented explicitly in the form of a multi-variable optimization problem, and solved at every control step.

The rest of this paper is organized as follows: Section 2 provides an overview of key concepts of the ACME language. Section 3 shows the basic design components of the ACME meta-model. Section 4 discusses the ACME interpreter which translates models into executable codes. A case study using the LLC approach is presented in Section 5. Conclusion and future research are discussed in Section 6.

2. ACME OVERVIEW
Effective self management requires the ability to monitor and tune system variables that affect various QoS related parameters. Those parameters are often inter-dependent, i.e. modifications made on one may affect others. Also, op-
erational constraints such as resource limitations and safety margins impose additional requirements on the system. The inter-dependencies and constraints need to be effectively captured for a self-management design. In addition, future variations in the system components and structure need to be considered as well to guarantee the system performance. Control-based techniques have proven to be effective in addressing the above requirements for self-management design and in addition they can provide performance guarantees under given operating conditions. However, the adoption of such techniques remains limited due to lack of tools and libraries that facilitate the control-based design for design engineers.

To address this problem, we propose in this paper the ACME framework. The ACME is control-theory oriented framework aimed at providing effective self management for computation systems. Fig. 1 shows the develop process of the ACME. Structurally, the ACME is composed of three main aspects. One is the architecture structure, in which high level components and their interconnections are defined. Another is the data collection entity, which is responsible for collecting system measurements corresponding to the model variables. The third one is the system dynamics structure used for capturing the system model, specifications and operation constraints, as well as providing modules for estimating system future variations and tuning system variables with respect to operational variations and constraints.

Although LabView and MatLab have control toolkits with similar interface to ACME, the ACME can generate various executable codes, like C++, XML, Python, or even MatLab codes upon requests based on the graphical models. More importantly, control engineers can easily modify the modeling structure and specifications when necessary by updating meta-models.

The following subsections describe the semantic intent of the key modeling components in ACME. In this paper, to enhance readability, the following font-based notations are adopted: “components” used for the main components of the meta-model, “connections” used for the connections between the components, “visible” used for the visibility aspects of models, and “attribute” used for the component attributes.

2.1 Architecture
The architecture in the ACME captures the main structure of the whole system. It contains any of the components in the self-management design, as well as the connections between the underlying ports of these components. From the architecture level of view, the designer can construct the high-level components of the system and define the connections between them. The details of these components are encapsulated in the underlying substructures, which have their own internal descriptions.

2.2 Data Collection
The data collection entity contains all the system variables. In practical systems, some of the system variables can be measured directly while others cannot. In some situations, system variables that cannot be measured can still be calculated based on the measured variables using observers. In other applications, future values of certain system variables need to be estimated. ACME distributes the data collection tasks to three different entity models as follows. First, a Sensor model reads in all the measurable data, which include environment inputs, observable system states, and system outputs. Latency, bandwidth, and CPU utilization are examples of observable system states for some class of systems. Second, to calculate the system states that cannot be observed directly, an Observer model collects all the related variables and computes the system states by association equations. Third, an Estimator model uses the latest and historical sample data to estimate future system variables. An example of implemented estimators in ACME is the autoregressive moving average (ARMA) estimator. In general, the user can choose estimators that best fit the system configuration from an estimator library in ACME.

2.3 System Dynamics and Adaptation
In the ACME framework, the system dynamics is a schematic description that captures the known or inferred behavioral properties of a computation system. The system dynamics is used for the design and verification of the self-managing structures.

The system adaptation specification represents the configuration of a controller module chosen from the control library available in the ACME. For example, the LLC controller can be selected as the system adaptation module, and can be configured by identifying the look ahead horizon, the possible control input set, and a utility function that characterizes each point in the QoS space with a utility value (or cost). The LLC utilizes these specifications to manage the system at run-time by optimizing the underlying system utility within the constraints posed by certain operational requirements.

3. ACME META-MODELS
This section introduces the ACME meta-models corresponding to the basic aspects of a self-management design specification. The aim of this modeling approach is to capture the system design in a modular component-based form that can be easily accessible to the system designer. For example, the Estimator model discussed in the previous section can be added to the architecture as a high-level component, parameterized, and connected to other model blocks in the architecture through their available ports. In the following subsection we presents the ACME meta-model, which is expressed with a stereotyped UML class-diagram notation. The stereotypes including <<Model>>, <<Atom>>, <<Connection>>, etc., express the binding of the abstract syntax to the concrete syntax implemented by the GME environment. Details of the concrete syntactic constructs
3.2 Data Collection Models

All basic data types used in the meta-model like the ControlInput are first defined in a component paradigm. SystemState, SystemOutput, and ControlInput are basic types of variables for control systems. ControlInput and SystemState represent the control inputs and system states respectively. SystemState and ControlInput can be used in the Observer, SystemModel, and Controller models, while SystemOutput is used in the Observer only. Composite data types can be defined and modified only in the component paradigm, since data used in all the other places are proxies of the data in the component. The following models are used to get the values of the data proxies. The data types are often defined with their attributes, some examples of the attributes are name, type, IP address, and speed in a configured network system.

In Fig. 2, ControlInput has two attributes DefaultValue and DataType in the lower half of the class rectangle.

3.2.1 Environment Model

The operation plants involved in certain environment always interact with the environment. The Environment model then represents the operation environment. In real time applications, the Environment only contains Sensor models to measure relevant environment variables from the real environment; in the simulation application, environment is simulated and environment variables are generated by the methods defined in a data generation library. For example, in the library, model Reader reads in data from local files, and Generator model can create uniform distributed numbers. The generated data are then sent to other components via Sensor models.

3.2.2 Estimator Model

The Estimator model can be selected from an estimator library, where different estimators like ARMA filters and Kalman filters are included. For example, we use an ARMA filter to estimate the environment parameter such as future data arrival rate \(\hat{\lambda}(k+1) \). Given the arrival rate \(\lambda(k) \) at time \(k \) and the mean \(\lambda \) of past observations over a specified window size of \(m \), the estimate rate for \(k + 1 \) is:

\[
\hat{\lambda}(k + 1) = (1 - \sum_{i=0}^{m-1} \beta_i) \bar{\lambda} + \sum_{i=0}^{m-1} \beta_i \lambda(k - i), i \in [0, m]
\]

where the gain \(\beta \) determines how the estimator tracks variations in the observed arrival rate. The ACME uses two kinds of models to represent the ARMA filter. The HistAve model specifies \(\lambda \), and its attribute HistWindowSize defines \(m \). The OrderedIndiv model specifies the \(\lambda(k - i) \), and its attribute HistIndex defines \(i \) (eg. a HistIndex of 1 represents the \((k-1) \)th observed data). Both models have Parameter attributes defining the gains \((1 - \sum_{i=0}^{m-1} \beta_i) \) and \(\beta_i \) respectively.

3.2.3 Observer Model

The Observer model calculates unobservable system states using measurable variables and parameters if the underlying functions are available. All the needed variables like SystemOutput, Variable, ControlInput, and SystemState are read in the Observer to the Function models to calculate the unknown values. Finally, SystemStates hold the computed data and assign them to other models.

3.3 Controller Model

The Controller model specifies the parameters of the controller design, and Fig. 3 shows the meta-model of the LLC supported by the GME environment are presented in [1, 9]. The sub-languages that constitute the ACME language are addressed below.

3.1 Architecture Models

The architecture stereotyped as a folder, contains a System model that collects all necessary parts of a system, each of which encapsulates its local components. In a distributed system, such as a web-server, a system involves multiple subsystems, each of which has independent local controllers with different performance requirements; also, a global controller addressing system-wide performance requirements will be constructed for the system, managing the interaction between the local controllers.

This model expresses the general structure of the overall system. Fig. 2 shows the meta-model of the architecture modeling sub-language. Note that the meta-model figures only show the main models, while other models are diminished in gray for simplification. The UML notation for containment is a line connecting an object to its container, with a small black diamond on the "container" end of the line. So PhysicalSystem, SystemModel, Environment, Observer, Controller, and Estimator are all key components which can be contained in the System.

The connections in the architecture define data transportation between models. As shown in Fig. 2, the System also contains a connection Controllable. The small black dot associates the connection with two endpoints ControlInput and Actuators, which act as ports of the high-level components, while the connection is directed from "src" to "dst". Similarly, signals in the Environment models can be sent to the Estimator models by SensorToEst connection, to the Observer models by Measurement connection, or to SystemModel by SensorConn connection; estimated variables can be sent from the Estimator models to the SystemModel through EstSignalOut connection; ports of system states in different blocks can be connected to each other by SystemStateConn connection, as can of control inputs with ControlInputConn connection.
controller, which has an attribute Horizon specifying the prediction horizon of the LLC. It contains Utility, ControlInputSet, and SetPoint models. The Utility has three important attributes: Constraints includes the constraints the system need to follow, UtilityFunction is to write the utility function, and Operation decides whether to “minimize” or “maximize” the utility function. The ControlInputSet contains all the available control inputs for the system. SetPoint is the target value that the automatic control system aims to reach.

ControlInput, SystemState and SetPoint can be sent to the Utility by UtilityConn. Users can then use the LLC by setting the above values of the models without knowing the implementation details.

3.4 System Dynamics Model

The system dynamics specifies the behavioral characteristics of a computation system. The ACME has three types of models for the system dynamics: SystemModel, PhysicalSystem_sim, and PhysicalSystem. In SystemModel and PhysicalSystem_sim, the behavioral characteristics are expressed by hybrid automata or mathematical functions, through which system states are updated. The general forms of HybridAutomata notation and Function notation are defined in the meta-model. In PhysicalSystem, the behavioral characteristics are the physical system states measured by the Sensor models.

The key models of the SystemModel as shown in Fig. 4 are HybridAutomata, Function, and ValidCtrlInputs. The HybridAutomata has State models, including one InitialState in each HybridAutomata, and StateTransition connections between them. State has attributes EntryAction, ExitAction, and FunctionExpression; Transition has attributes Action, Trigger, and Guard. The transitions can be addressed in the attribute HA_expression of, or modeled inside the HybridAutomata by choosing from the HA_expression attribute, “Using scripts” or “Embed HA inside”. The HybridAutomata model also has two aspects: FSMAspect and DataFlowAspect. In the FSMAspect state transitions are visible, while the DataFlowAspect demonstrates how data flow into States. The Function model has an Expression attribute that captures mathematical relations. The ValidCtrlInputs checks the validity of the control inputs sent by the controller corresponding to current system states. For example, if there are two States: Idle and Active, the ValidCtrlInputs should also have two ValidSets like IdleSet and ActiveSet correspondingly. Assume that the system is in the Idle State, then if a control input is not in the IdleSet, it is considered invalid; otherwise it is valid.

PhysicalSystem_sim model is used to simulate the behaviors of physical systems. Similar to the SystemModel, PhysicalSystem_sim has HybridAutomata and Function. It also has Actuator and Sensor models corresponding to the same elements as in the real physical system.

The PhysicalSystem, working in a real-time application mode, contains Actuator and Sensor models. Sensor receives system states from, and Actuator sends control inputs selected by Controller to physical plants. Both models have two main attributes: sampling rate and accuracy. System dynamics can also be included if the system can be analytically modeled.

4. ACME INTERPRETER

Interpreters are model translators designed to work with all models created using the domain-specific GME. The translated models then can be used as sources for analyzing programs [1]. We use a framework named Builder Object Network version 2.0 (BON2) to access the ACME components and the relationships between them. The BON2 generates the basic files of the interpreter, and our work consists of writing the crucial portion of the interpreter code. First,
the interpreter navigates the object network and traverses all the models. If a System exists, the traversal will start using TraverseAll() in the Component::invokeEx() function, and the TraverseAll() function will generate necessary files successively as in Fig. 5, when each individual component is queried by accessing its properties, attributes, metadata, information, or associations. For instance, the LLC controller code identifies the Controller by the model property, reads the Horizon attribute from the Controller, and obtains the associated system states and control inputs. The generated scripts are ready to run for execution.

5. CASE STUDY

In this section we present a power management (PM) case study developed based on a generic limited lookahead controller framework as shown in Fig. 6. The PM uses an LLC controller to manage the power consumed by a processor under a time-varying workload. In the framework, a relevant parameter of the operating environment, workload arrival patterns, is estimated and used by the system model to forecast future system behavior over a look-ahead horizon. The controller optimizes the forecast behavior by selecting the best control inputs to apply to the system. The case study is the model integrated implementation of the PM case study as presented in [2].

The generic control framework is fully developed using the ACME tool. We build the PM application using the models generated by the ACME meta-models. Fig. 7 is a screen shot of the implemented application, which is the architecture of the system. As the case study is in the simulation mode, we use Environment_Sim and PhysicalSystem_Sim models instead of Environment and PhysicalSystem. In each simulation step, two environment variables are generated in Environment_Sim. One is the request arrival rate obtained from a local file using the Reader model; the other is the execution time of the requests, set to 6.0ms in the Generator model. The future values of the variables are estimated by the ARMA filters and sent to the SystemModel to forecast two system states, queue level and dropped requests, over the Horizon of the Controller Optimizer. The queue is a buffer to store incoming requests with a limited size, so the dropped requests represents the signals dropped when the queue is full. By selecting the control input, the best CPU processing frequency, the Optimizer balances the forecast queue level, dropped requests, and the frequency. Finally, PhysicalSystem_Sim updates the system states using the selected control input and new environment variables.

In each simulation step, the Optimizer reads the current queue level, and sends it together with all the frequencies in the ControlInputSet to the SystemModel. The SystemModel will calculate all the next possible queue sizes q_i and dropped requests d_i corresponding to the ith frequency f_i. The set q_i, d_i, f_i are compared with their SetPoint and computed in the Utility model.

Each time the SystemModel receives new data, including current queue size and all the possible frequencies, it will check the validity of the processing frequencies for the queue size in the ValidCtrlInputs model. If the frequency is valid, it will be sent to the Functions of the SystemModel together with the queue size to compute the next possible queue size, which is then sent back to the Optimizer for further operation. Otherwise, it will be discarded.

Performance Analysis. We tested code generated by the interpreter. The performance of the power management system is evaluated using a synthetic workload file and Fig. 8 shows the results of one simulation run. The processor can operate between [200, 600] Mhz with 25 Mhz increments, and the Horizon of the Optimizer was set to 2. The request arrival rates exhibit cyclical variations characteristic of most HTTP and e-commerce workloads[4]. From the frequency responses, we can see that the controller tracks the arrival rates well. The increase in the dropped requests dues to a sustained high request arrival rate, when the controller already operates with its maximum frequency.

We compare the simulation results above with a similar system using a constant frequency 400Mhz for 10000 simulation steps, where the first 200 data are discarded considering the system adaptation. As shown in Table 1, the LLC control drops only 1.5% of the requests dropped by the constant control, while spending 73.3% of the power spent by the constant control. Moreover, if the frequency in the uncontrolled

<table>
<thead>
<tr>
<th>System</th>
<th>With Control</th>
<th>No Control</th>
<th>With Control/No Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue size (MB)</td>
<td>max</td>
<td>average</td>
<td>max</td>
</tr>
<tr>
<td>Dropped request</td>
<td>107</td>
<td>4.4</td>
<td>410</td>
</tr>
<tr>
<td>Frequency(Mhz)</td>
<td>600</td>
<td>342.5</td>
<td>400</td>
</tr>
<tr>
<td>Power cost(MJ)</td>
<td>360000</td>
<td>117300</td>
<td>160000</td>
</tr>
</tbody>
</table>
model is decreased, more requests will be dropped as the processing speed of the server is slower; while an increase of the constant frequency will make the system consume more power, because the frequency of 400Mhz is already greater than the average frequency 342.5Mhz of the LLC system.

6. CONCLUSION

In this paper, we presented a model integrated framework ACME to facilitate the design of self-managed computation systems. The proposed framework can accommodate variety of model-based control strategies. Modules supporting the control structure such as estimators can be added and parameterized based on the user-defined system model and its specification. The framework provides supports of automatic synthesis of the managing controller modules based on a given system model, constraints and specification. To demonstrate the ACME framework, we developed a limited lookahead controller using the ACME framework to manage power consumption in a DVS-capable processor under a time-varying workload.

7. REFERENCES