
Regulating workload in J2EE Application Servers

Wei Xu Zhangxi Tan Armando Fox David Patterson
{xuw, xtan, fox, patterson}@cs.berkeley.edu

Abstract

In this project, we design and implement flow control
in a J2EE application server by applying control theory
and dynamic probabilistic scheduling. The goal is to reg-
ulate workload at the web front end to prevent overload-
ing the shared database, while keeping fairness over all re-
quests. Since workload in an enterprise application has a
much larger variance in terms of resource demand, classi-
cal control theory does not work well. We supplement the
feedback control with workload classification and dynamic
queue scheduling, and find that correct queueing policy can
simplify the control design. The experimental results show
that our method effectively prevented database overload-
ing and thus preventing deadlock without resources over-
provisioning, as well as keeping client response time low.

1 Introduction

Many large software systems today are built out of black-
box components. Data or requests are pushed through these
components at different stages of processing. Controlling
data flow in such systems is very important, but hard to
tune manually. In this paper, we present a case study of
using feedback control theory to control data flow in JBoss
application automatically.

In a typical three tier J2EE application, the web server
executes Servlets to generate response. Servlets may in-
voke one or more Enterprise Java Beans(EJBs), and EJBs
can access database backend (Figure 1). Each tier is un-
aware of the capacity of other tiers. Overloading a back-
end tier causes problems of poor performance, even dead-
lock. Unfortunately, JBoss application server we used has
this problem. Recovery from overloading situation is hard
since front tiers, which has no knowledge of backend load,
will continue to retry, causing more load.

Careful capacity planning among tiers helps prevent this
problem. However, this is a time consuming task for system
administrators and often requires knowledge about particu-
lar application. Due to unpredictable disturbances in the

system, it is usually required to over provision resources in
the system.

Our solution is to use feedback control to regulate rate at
which workload enters the web server, based on the work-
load at the database server.

Control theory has been successfully applied to many ap-
plications in computer systems. It can be used for parame-
ter tuning to improve system performance. The controlled
configuration parameter can be resource (e.g. CPU time)
allocation [7], buffer size [5], or some other configurable
parameters [4].

In our previous project, we used control theory to reg-
ulate data flow. In [10], we successfully prevented stream
data loss when performance disturbances causes overload-
ing in the system. This project is more involved because
enterprise applications have more heterogeneous workload
that is difficult to model. HTTP requests at the web tier do
not provide enough information to predict their potential re-
source usage. Thus, simple linear model has to include a lot
of disturbances (things not captured by the model), result-
ing variance in output. Although more complex modeling
techniques may help to solve this problem, we choose to
make small modifications to the target system to keep the
model simple.

The problem we are trying to solve here is similar to
congestion avoidance and queueing in the networking field.
Many queuing and workload classification techniques are
usually used to obtain the fairness of the scheduling. Clas-
sical time-shared examples of such schemes are Virtual
Clock[11], Weight Fair Queuing (WFQ)[8] and its varia-
tions such as WF2Q[1]. WFQ is the packetlized approxi-
mation of an excellent fair sharing algorithm in ideal fluid
system. Hierarchical link sharing schemes provide a way to
share the bandwidth resource in different levels in a hierar-
chical sharing tree, such as Class Based Queuing (CBQ)[6],
Hierarchical Packet Fair Queuing (HPFQ)[2], and Hierar-
chical Fair Service Curve (HFSC)[9].

The major differences between our problem and the
problems in networking are, 1) We do not have the choice of
dropping a request in the middle of processing, as most of
the black-box components are not designed to handle these
errors; 2) It is possible to get a global view of the system

and make centralized decisions; 3) the throughput (in terms
of number of requests) is much lower than networking, thus
more complex queuing and classification can be used. Thus,
we can do more classification and keep more state to sim-
plify the queueing algorithms.

The queuing policy can be designed independently from
congestion control. In this project, we find that certain
queuing policy can help simplify the flow controller. We
borrowed these techniques, but use it for a different goal,
which is to simplify system model for the feedback control
loop.

In our queuing policy, we classify requests by educated
guesses of their usage of database. We first generate a pro-
file offline, and find a boundary to classify the requests to be
large and small, based on the database usage1. At run time,
we guess a request to be large or small based on the URL
only, and queue large and small requests separately. This
is clearly an inaccurate guess, but as we have the feedback
control loop, the inaccuracy can be tolerated.

The queue scheduler acts as actuator of the feedback
controller, which tries to calculate a combination of small
and large requests to admit into the web server. The pol-
icy favors small requests, while preventing large requests
from starving. We used an algorithm called Dynamic Prob-
abilistic Scheduling (DPS), which dynamically adjusts the
scheduling priority only by monitoring the blocking proba-
bility of each type of request. This algorithm is simple and
does not need manually tuned parameters.

The resulting system (feedback control + dynamic prob.
scheduling) is free of database deadlock, while maintains
a close-to-maximum throughput (supporting 400 simulated
concurrent clients). A simple feedback controller with-
out categorization can support up to about 300 concurrent
clients without deadlock, but only when setting the maxi-
mal database access to a lower value. On the other hand,
the original unmodified JBoss only provides less than half
of this throughput (150 simulated concurrent client) and still
deadlocks occasionally.

The rest of the paper is organized as follows: Section 2
describes the design of modules in the flow controller and
the design trade offs. Section 3 discusses the experimental
results. We conclude and discuss future work in Section 4.

2 Admission Control Design

In this section, we introduce the main modules that im-
plement the admission control. Our admission control pro-
totype is implemented in JBoss application server as four
modules, the feedback rate controller, the workload classi-
fier, probabilistic queue scheduler and instrumentation that

1This process can be done online also, but we need an efficient way
of tracking database usage of each requests, which does not exist in the
current JBoss infrastructure.

measures workload on the database server. This system, to-
gether with the J2EE application we used, is described in
Figure 1.

2.1 The controller and feedback loop

For the purposes of our control loop, our target system
includes the JBoss server and the queue scheduler.

We used the simplest controller, the Integral Controller
(I-controller). A controller is a mathematical function that
calculates the controller input of(k+1) -th interval, usually
denotedu(k), with an error inpute(k), and potentially the
history of u or e. This function, or thecontrol law for I-
controller is:

u(k) = u(k − 1) + KIe(k)

In this application,u(k) is the number of allowed HTTP
request per time period. This value is sent to the queue
scheduler, which pulls requests from HTTP connection
queues to realize this rate. It can be understood as tuning
a knob on the queue scheduler.

The controller parameterKI is set arbitrarily to 1. We
can do this because I-controller is stable no matter whatKI

is. Better system identification may help to improve perfor-
mance of controller, but the as this system includes complex
workload and becomes unstable at boundary conditions, the
system identification is hard to do, and not very useful ei-
ther. In fact, setting the I-controller parameter to a conser-
vative value is a common practise[7].

Control errore(k) is calculated with the measured output
y(k) and a reference valuer(k). r(k) is the max database
connection allowed per time period, whiley is the measured
number of database connection of last period.

Settingr is a tricky process. JBoss is unstable when
close to its capacity. We choose to tune this value auto-
matically with a TCP slow-start type of experiment, which
increaser until it gets overloaded. Of course, we can use
another explicit control loop to tune this parameter based
on other measurable database load metric. We decide to do
it as a future work as it is not very relevant to the theme of
this project.

Reference inputr is an artificial limit imposed on sys-
tem’s throughput. Whene(k) can be large, operators of the
system have to setr conservatively to avoid occasional large
errors. This significantly reduces system throughput. Thus,
letting e to be as close to zero as possible and has minimal
variance is the first goal of the controller.

Unfortunately, we find that this simple model does not
capture the disturbances caused by the unpredictability of
database workload. To get a better prediction of database
workload, we tried to classify the incoming workload.

Our experience shows that we can setr to approximately
90 with a simple controller with a lot of noises, while we can

2

C
la

s
s
if
ie

r

Dynamic

Probabilistic

Scheduler

Rate

Control

Thread Pool

Profile

JSP

Servlet

Servlet Container

Web Server

Presentation Tier
(Servlets and JSPs

packaged as WAR)

JSP

Servlet

Servlet Container

Business

Objects Cluster

Business Tier
(Session Beans

packaged as EAR)

EJB Container

Session
Bean

EJB Container

Session
Bean

Data Tier
(Entity Beans

packaged as EAR)

Data

Objects Cluster

EJB Container

Entity
Bean

EJB Container

Entity
Bean

DataBase

Cluster

DataBase
Server

DataBase

Server

Monitoring

Figure 1. Overall software architecture Our admission control subsystem is implemented in JBoss application server as
four modules, the feedback rate controller, the workload classifier, thequeue scheduler and the instrument that measures workload
on the database server. These modules implement controller, precompensator, actuator, and sensor, respectively of an abstract
feedback-control loop.

set it to 120 with a controller with workload classification
and separate queueing, showing a 30% increase.

2.2 Workload Classification

Although the separate queueing and workload classifica-
tion techniques we use are quite similar to network queue-
ing, they have different goals. The goal of workload classi-
fication is to get a more accurate guess of the database re-
source demand from a particular HTTP request to simplify
the model in the control loop.

The workload classification is done in two phases. We
first do an offline profiling of database usage for each URL
requested. This is done by sending a sequence of low
rate requests to the web server and measure the (delayed)
database usage. In our future work, we want this process
to be online. The process is currently not online due to the
difficulty of resources accounting in JBoss, mainly resource
tracking across asynchronous calls and various caching. We
are investigating ways to simplify resource accounting in
J2EE and similar infrastructures.

Clustering is automatically done withk-means, a sim-
ple statistical method. We put request into two clusters, the
large requests and small requests. Notice that our measure-
ment of database usage is only an approximation, due to un-
captured features such as parameters and caching behavior.
This is enough since the feedback loop can tolerate small
disturbances.

At runtime, we classify requests by their URL into large
requests and small requests, based on the offline profile.
This is a fast process (a single table look up). The average
database usage of each class is used by the feedback con-

troller to estimate the predicted database usage of the next
period.

Workload classification naturally leads to the problem of
separate queueing, since we want to avoid head blocking.
Separate queueing is a policy decision. We show that certain
policies can work naturally as the actuator of the feedback
controller.

2.3 Dynamic Probabilistic Scheduling (DPS)

With classification, controller performance is signifi-
cantly improved. However, some small requests are delayed
even if they do not make any database connection. This is
because the admission control is not based on the incoming
rate of request, but on a separate metric of database work-
load.

In our policy, we want to favor small requests. There
are two reasons. First, client expect simple requests to have
small response times. Second, the bottleneck is database,
while the web server is under-utilized. Admitting small re-
quest can increase the web server utilization and thus in-
crease overall system throughput. Besides giving small re-
quests high priority, we also want to avoid starvation for
large requests. This is a solved problem in networking
area, and we employ a dynamic probabilistic scheduling
algorithm. We assign higher priority to small requests,
Prioritys > Priorityl.

Like all probabilistic scheduling algorithms, the priority
is implemented using scheduling probability (i.e. the prob-
ability that a request is scheduled upon arrival at the head
of the queue.). Scheduling probability for small requests
is always set to 1.0. That is, if there is any free database

3

connection, a small request can be served. The scheduling
probability for large serviceProbl is determined dynami-
cally by our algorithm to avoid starvation of large requests.

Comparing to static probabilistic scheduling (SPS) algo-
rithms, which requires to set blocking probability of each
type of requests, DPS can theoretically guarantee service
fairness between small and large requests, regardless of
workload change. DPS also has performance that is close to
the optimally tuned SPS and has a simple and low overhead
implementation. Limited by space and the interests of this
workshop, we omit the theoretical analysis of DPS in this
paper.

3 Experiments

In this section, we describe our implementation of the
flow control system and experimental results.

3.1 Experiment setup

We implemented our flow control system in JBoss Ap-
plication server version 3.2.1. We run RUBiS [3] as our test
application. RUBiS is a benchmark application for J2EE
application servers. It models an online auction site with
different techniques in J2EE (such as EJBs, Servlets, con-
tainer managed persistency or bean managed persistency.).
We used RUBiS client simulator as workload generator.
The client simulator runs on 5 machines with 100 clients
on each.

We set our controller parameterKI to 1 and reference
input to be 120 database requests per second as described in
Section 2.1.

We describe the workload used in all experiments here
(see 3). In the initial seven minutes (before the first vertical
line), there are 200 concurrent clients doing normal oper-
ations (most of which are large requests after a 2 minutes
ramp up time). From the 7th minute, another 100 clients
that only send small request are added. At minute 10 (be-
tween the first and second vertical lines), another normal
clients join (sending both large and small requests). At
minute 17, 200 normal clients leave, leaving only 200 nor-
mal clients plus 100 small-request-only client until the end
of the experiment.

3.2 Result

First, we want to evaluate the performance difference be-
fore and after classification. Figure 2 shows the aggregated
behavior of database workload. The vertical line is the ideal
case (the average database load is 120 connections per sec-
ond). We see that the one with classification is very close
to this ideal case. The set up with non-classification version
of controller failed during the experiment since the database

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Database connections per sec

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Ideal Value (reference)

Without categorization
With categorization

Figure 2. CDF of controller output with and
without workload categorization

workload involve too much unpredicted disturbances, thus
we do not show end-to-end delay figure of this type of con-
troller.

To demonstrate the effectiveness of DPS algorithm,
we compare the result with static probabilistic scheduling
(SPS).

Figure 4 shows the temporal behavior of end to end re-
sponse time when DPS is used for scheduling. Comparing it
to Figure 3, we can see that DPS, when the database server
is the bottleneck (any time except for minutes 10-17), small
requests has small response time, as expected. Large re-
quests do need to wait in a queue due to the admission con-
trol, but the response time is still reasonable (no starvation).

During minutes 10-17 (between vertical lines (2) and
(3)), the workload doubled and the web server is also over-
loaded so database is no longer the bottleneck. In this case
DPS degrades gracefully in that neither small nor large re-
quests starve.

4 Conclusion and future work

In this paper, we implement a flow control system in
JBoss application server. The aim of designing the control
system is primarily for safety concern. By extending sim-
ple feedback control with request classification and separate
queueing, we successfully limit the request admission rate
at the web server front end and deliver robust performance
when the system is overloaded. At the same time, our dy-
namic probabilistic scheduling assures the service fairness
and better response time. The design and implementation is
simple, and application independent.

For Future work, we will explore a more efficient imple-

4

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

Time (min)

R
es

po
ns

e
T

im
e

(s
ec

)

(1) (2) (3)

Large Request
Small Request

Figure 3. End-to-end response time using
round-robin queue scheduling

mentation to isolate the instrumenting and scheduling. The
request classification and dynamic probabilistic scheduling
can be further improved with higher accuracy and support-
ing multiple classes.

References

[1] Jon C. R. Bennett and Hui Zhang. WF2Q: Worst-case fair
weighted fair queueing. InINFOCOM, pages 120–128,
1996.

[2] Jon C. R. Bennett and Hui Zhang. Hierarchical packet
fair queueing algorithms.j-IEEE-TRANS-NETWORKING,
5(5):675–689, October 1997.

[3] Emmanuel Cecchet, Julie Marguerite, and Willy
Zwaenepoel. Performance and scalability of ejb appli-
cations. InOOPSLA ’02: Proceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 246–261, New
York, NY, USA, 2002. ACM Press.

[4] Yixin Diao, Neha Gandhi, Joseph L. Hellerstein, Sujay
Parekh, and Dawn M. Tilbury. Using MIMO feedback con-
trol to enforce policies for interrelated metrics with applica-
tion to the Apache web server. InProceedings of Network
Operations and Management Symposium (NOMS02), 2002,
pages 219– 234. IEEE/IFIP, 2002.

[5] Yixin Diao, Joseph L. Hellerstein, Adam J. Storm, Mah-
eswaran Surendra, Sam Lightstone, Sujay S. Parekh, and
Christian Garcia-Arellano. Incorporating cost of control into
the design of a load balancing controller. InIEEE Real-
Time and Embedded Technology and Applications Sympo-
sium, pages 376–387, 2004.

[6] Sally Floyd and Van Jacobson. Link-sharing and resource
management models for packet networks.IEEE/ACM Trans.
Netw, 3(4):365–386, 1995.

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

Time (min)

R
es

po
ns

e
T

im
e

(s
ec

)

(1) (2) (3)

Large Request
Small Request

Figure 4. End-to-end response time using
DPS scheduling algorithm

[7] Xue Liu, Xiaoyun Zhu, Sharad Singhal, and Martin Ar-
litt. Adaptive entitlement control to resource containers on
shared servers. InProceedings of the Ninth IFIP/IEEE In-
ternational Symposium on Integrated Network Management
(IM 2005). IEEE, 2005.

[8] Abhay K. Parekh and Robert G. Gallager. A generalized
processor sharing approach to flow control in integrated
services networks: the single-node case.j-IEEE-TRANS-
NETWORKING, 1(3):344–357, June 1993.

[9] Ion Stoica, Hui Zhang, and T. S. Eugene Ng. A hierarchical
fair service curve algorithm for link-sharing, real-time and
priority services. InSIGCOMM, pages 249–262, 1997.

[10] Wei Xu, Joseph L. Hellerstein, Bill Kramer, and David Pat-
terson. Control considerations for scalable event process-
ing. In Distributed Systems Operations and Management
(DSOM’05), 2005.

[11] L. Zhang. Virtual clock: A new traffic control algorithm for
packet switching networks. InProc. ACM SIGCOMM ’90;
(Special Issue Computer Communication Review), pages 19–
29, September 1990. Published as Proc. ACM SIGCOMM
’90; (Special Issue Computer Communication Review), vol-
ume 20, number 4.

5

